
CS5114 - Project 1 - Decoding Convolutional Codes with the

Viterbi Algorithm

Brian Hulette

05/11/2014

Contents

1 How Convolutional Codes Work 1

2 Decoding Convolutional Codes 2
2.1 Decoding with Brute Force . 2
2.2 Decoding with a Recursive Approach . 2
2.3 Decoding with Dynamic Programming - the Viterbi Algorithm 3
2.4 Top-Down vs. Bottom-Up . 4

3 Performance of Brute Force vs. Viterbi 4
3.1 Brute Force . 4
3.2 Recursive . 5
3.3 Viterbi . 5

4 Other Parameters Affecting Performance 5

A Algorithm Pseudocode 6
A.1 Brute Force . 6
A.2 Recursive . 6
A.3 Viterbi . 7

1 How Convolutional Codes Work

A convolutional code is a type of error correcting code. This is away of introducing redundant data
into a data stream in order to allow a receiver to correct any errors that occur in transmission.
A very simple code might simply send each bit in a stream multiple times, so instead of sending
10110, a transmitter would send 111 000 111 111 000. Its easy to see that this would make it much
easier for a receiver to successfully determine what the intended message was, even if some of the
bits were received in error.

A convolutional code works similarly, but it introduces redundancy in a much more complex way
to improve preformance. Unfortunately, the additional complexity makes decoding the intended
message much more difficult.

The concept of a convolutional code is much easier to understand by looking at a trellis diagram,
as shown in Figure 1. The image can be a little daunting at first, but it’s not too bad once you
break it down. The trellis is simply a way of visualizing a finite state machine over time. The detail
view in Figure 1a shows the four possible states on the left, and then all of the possible transitions
to the states in the next iteration, shown on the right. The labels on each transition are of the
form ”input/output”. So, for example, if the encoder is currently in state 00 and if the input bit
for this step is 0, then it will remain in state 00 in the next iteration and output the code bits 00.
The encoder then repeat this process for each of the data bits that comes in.

(a) Trellis Detail - each transiton is
marked with I/OO where I is the in-
put bit that leads to that transition,
and OO are the code bits that are out-
put when that transition is taken.

(b) Example traversal of a Trellis for encoding. On each iteration the encoder
follows the transition which corresponds to the data bit for that iteration, and
outputs the two code bits associated with that transition.

Figure 1: Viterbi Trellis

Figure 1b shows what this process looks like when it is repeated for several bits. the “Data
Bits” along the top are the input bits - this is the data that we want to encode. The “Code Bits”
along the bottom are the output bits - this is the encoded data, which we will transmit. The red
transitions show the path that was taken through the trellis to produce these outputs.

So that describes how the encoder works, but that is the easy part. The receiver has a harder
job, it needs to take the coded bits that we received (possibly with some bit errors from an imperfect

1

transmission) and decode them to determine the original data bits - this is the problem that the
Viterbi algorithm excels at.

2 Decoding Convolutional Codes

Decoding a convolutional code is really just an optimization problem. Given a set of code bits
(with some bit errors) the decoder needs to find the sequence of data bits which is the most likely
to have produced those code bits.

There are a few different approaches to this problem. You could take a brute force approach,
which is very easy to understand but also very inefficient. Another option is a slightly more efficient
recursive approach. But both of these options are blown away by the Viterbi Algorithm, a Dynamic
Programming approach which takes advantage of the problem’s optimal substructure. I will discuss
each of these approaches in detail in the following sections.

First I want to discuss a little terminology. The length of the data and code bit sequences is
given by Nd and Nc, respectively. Nd and Nc are related by the code rate, r, with the relation
Nd = rNc. I will use dij to refer to the vector of data bits, and cij for the vector of code bits.
The subscript is used to refer to a subset of the bit sequence, so c0:Nd

refers to the entire code bit
sequence, c0:2 refers to the first two bits, etc...

2.1 Decoding with Brute Force

A brute force approach is to simply iterate through all 2Nd of the possible sequences of data bits,
encode each of them, and compare those code bits to the code bits that were received. The sequence
that produces code bits that are the most similar to the received code bits must be the input data.

How do we determine how “similar” a bit sequence is to the actual received code bits? We
simply count the number of bits which are different between the two sequences - this is called
the hamming distance, which I will denote with dh(s1, s2). For example, the hamming distance
between the sequences 11011 and 11101 is dh(11011, 11101) = 2, because the third and fourth bits
are different.

It’s easy to see that this brute force approach is going to be very inefficient, since we are iterating
over 2Nd possible sequences, so let’s discuss some other options.

2.2 Decoding with a Recursive Approach

A recursive approach actually isn’t much more efficient than the brute force approach, but it helps
us to see the optimal substructure that we will use in the Viterbi Algorithm.

For the recursive approach, the important thing to realize is that there are exactly two possible
transitions leading from each state s, based on whether the data bit for that step is a 1 or a 0,
as you can see in Figure 1a. Each one of these transitions has associated with it a certain set of
output bits, which I will call o0 and o1, and a certain next state, which I will call s′0 and s′1.

So if our recursive function starts in state s = 001, then for each of the possible input bits,
i = 0, 1, we need to measure the hamming distance between its output bits and the first two
received bits, dh(oi, c0:2). Then we call the recursive function again for each i, but this time start it
in state s′i, and use the code bits c2:Nd

. We add the hamming distance for this state to that returned

1We know to start the decoder in the 00 state, because convolutional encoders always start in 00

2

by the recursive function call, and whichever input bit i yielded the lowest hamming distance is
our decision for this step. The recursive calls stop once we they reach the right side of the trellis
and there are no more code bits to process.

It’s easy to see that as we progress from left to right in the trellis, these recursive calls will
begin to overlap each other, and we will be computing the same thing multiple times. Clearly a
dynamic programming approach which remembers these calculations is needed.

2.3 Decoding with Dynamic Programming - the Viterbi Algorithm

The recursive solution can clearly benefit from a Dynamic Programming approach because of the
large amount of overlapping subproblems. To find a DP approach we can follow the Four Steps for
developing a DP algorithm.

Step 1 is to characterize the sturcture of an optimal solution - in this case an optimal solution
is a sequence of data bits, d, that minimizes the hamming distance between the given code bits, c,
and the code bits that it generates, c′.

Step 2 is to recursively define the value of an optimal solution - I have already done this in
Section 2.2.

Step 3, Computing the Optimal Costs, is where things get interesting. To do this, we need to
think about the problem a little bit differently. Consider the fact that on every iteration there are
two possible transitions leading into each of the next states. For example, you can see in Figure 1a
that to get to the state 00 you could come from state 00 with an input bit of 0, or from state
01 with an input bit of 0. The idea of the Viterbi algorithm is to figure out which of these two
transitions is more likely for each state.

(a) Traversal of the Trellis step for
iteration 2 to 3. Numbers on the
transitions indicate the hamming dis-
tance of that path.

(b) Traversal of the entire Trellis. The numbers over each state are the path
metrics for that state. The “Loser” branches for each state are faded out. The
red line shows the results of the traceback.

Figure 2: The Viterbi algorithm used to decode the example from Figure 1

Ok, so how do we do that? On each iteration, we will assign a metric to each of the states,

3

called the path metric. This metric is the distance between the solution so far and the received
code bits, c, so lower is better. I will call this metric mi,j , where i is the state, and j is the iteration.
For the first iteration we assign 0 to state 00 and infinity to all of the other states (ie m00,0 = 0 and
m01,0 = m01,0 = m01,0 = ∞), because we know the encoder started in state 00. On each iteration
we will use the mi,j values to compute the mi,j+1 values. The new metric is simply one of the old
metrics, mi,j , plus the hamming distance between that transition’s outputs and the received code
bits for this iteration. For each of the states of iteration j + 1 we will pick the transition which
yields the lower metric. We can then repeat this process all the way through the trellis.

Figure 2b shows the metrics for every iteration of my example problem, and Figure 2a shows
the details of this process for the transitions from iteration 2 to iteration 3.

Step 4 is to Construct an Optimal Solution based on the result of Step 3. To do this we simply
have to do a “traceback” of the entire trellis. Figure 2b shows the traceback for this example
problem. The traceback starts in the last iteration, on the state with the lowest metric, in this case
that is state 11 with a metric of 1. Then we traverse backward through the trellis, choosing the
“winner” transitions which we found in Step 3. On each step back we note the input bit for that
transition and add it to the optimal solution.

2.4 Top-Down vs. Bottom-Up

The algorithm described in Section 2.3 would be considered a Top-Down DP algorithm. Could we
come up with a Bottum-Up algorithm that would be more efficient?

The answer is no. Because of the structure of this problem, there isn’t really a distinction
between the performance of a Top-Down and Bottom-Up approach. A Bottom-Up approach would
look basically the same as the Top-Down aporach except we would traverse from right to left.

In fact, there are actually some disadvantages to a Bottom-Up approach. First of all, we couldn’t
use the fact that the encoder always starts in state 00 to set our initial conditions. And second,
since this algorithm is usually used in communications, we need to process data as it’s coming in,
in real time. In this case it makes sense to process the data Top-Down, so we can do some of the
processing as the bits are coming in.

3 Performance of Brute Force vs. Viterbi

In this section I will determine the runtime of each algorithm as a function of the number of data
bits, Nd. You can see pseudocode for each of these algorithms in Appendix A.

3.1 Brute Force

The main loop in BRUTE FORCE DECODE on is iterating over every possible Nd-bit sequence,
so there are 2Nd iterations. On each of these iterations it must encode the Nd-bit sequence using
ENCODE, (not shown here, runs in Θ(Nd) time), and compute the hamming distance between the
encoded sequence and the received bits using HAMMING DISTANCE, which also runs in Θ(Nd)
time.

Thus the runtime of the brute force approach is Θ(Nd2Nd). Of course this runtime is completely
untenable as a solution to this problem.

4

3.2 Recursive

Every iteration of the recursive helper must call itself twice, with a data sequence shortened by two
bits, which yields 2T (Nc − 2) and it must perform an operation which is constant with respect to
Nc, or Θ(1). So we know T (n) = 2T (n− 2) + Θ(1).

Thus the algorithm’s recursion tree will have Nc/2 levels, and each level will have 2L calls on
it. So the total number of calls is:

T (n) =

Nc/2∑
L=0

2L =
1− 2Nc/2+1

1− 2
= 2

(
2Nc/2

)
− 1 = Θ

(
2Nc/2

)
= Θ

(
2Nd
)

Where in the last step I use the fact that Nd = rNc = Nc/2. So the recursive approach is also
exponential, but at least we’ve gotten rid of the linear factor.

3.3 Viterbi

The Viterbi algorithm is clearly much more efficient than both of these algorithms. It simply iterates
over the entire trellis, and performs a Θ(1) operation on each step. The number of iterations is
simply the number of data bits, Nd. Thus the viterbi runtime is Θ(Nd).

4 Other Parameters Affecting Performance

So far in this paper I have restricted myself to talking about just one type of convolutional code,
called a rate 1/2, constraint length 3 code. But in reality there are infinitely many ways to configure
one of these codes. Each code is defined by a set of “generating polynomials” or “generators”
which basically tell the encoder what to do. In my pseudocode in Appendix A you will see that the
generators are passed in as an argument, since I wrote the algorithms to work with any of them.

There are a lot of different properties of the code we can determine from the generating polyno-
mials. For example, the code rate r is determined by the polynomials. The number of generating
polynomials determines how many bits are output for each input bit - so a set of two polynomials
yields a code with rate r = 1/2, as in my example.

Another property determined by the polynomials is the constraint length, K, which is just the
length of each polynomial. The number of states in the code is given by 2K−1. In my example, the
constraint length is K = 3, which is why there are 23−1 = 4 states.

It’s easy to see that the Viterbi algorithm actually runs in linear time with respect to the number
of states (because on each step it needs to iterate through each state to find its path metric), which
means that viterbi actually runs in exponential exponential time with respect to the constraint
length: Θ(2K). Clearly, the Viterbi algorithm’s performance is very sensitive to this parameter.
For this reason, code designers will generally use a constraint length less than 10.

5

A Algorithm Pseudocode

A.1 Brute Force

BRUTE_FORCE_DECODE(code_bits, generators)

01 r = 1/size(generators, 2) // Determine the code rate

02 N = length(code_bits)*r

03 d = infinity

04 input_bits = array of N zeros

05 for every possibe N-bit sequence, seq

06 code_bits = ENCODE(seq, generators)

07 this_dist = HAMMING_DISTANCE(code_bits, code_bits)

08 if this_dist < d

09 d = this_dist

10 input_bits = seq

11 return input_bits

HAMMING_DISTANCE(a, b)

01 return sum(xor(a, b))

A.2 Recursive

RECURSIVE_DECODE(code_bits, generators)

01 // outputs[this_state][input_bit] is the bits that are output when that

02 // transition is made

03 global outputs = GET_OUTPUTS(generators)

04 // next_state_table[this_state][input_bit] is the state that "this_state"

05 // will transition to if "input_bit" comes in

06 global next_state_table = GET_NEXT_STATES(generators)

07 input_bits, metric = RECURSIVE_DECODE_HELPER(input_bits, 0)

08 return input_bits

RECURSIVE_DECODE_HELPER(code_bits, curr_state)

01 if code_bits is empty

02 return [], 0

03 end

04

05 best_metric = infinity

06 for in_bit = 0,1:

07 data_bits, metric = ...

08 RECURSIVE_DECODE_HELPER(code_bits[bits_per_step:end], ...

09 next_state_table[current_state][in_bit])

11 metric += HAMMING_DISTANCE(code_bits[0:bits_per_step], ...

12 outputs[current_state][in_bit])

13 if metric < best_metric:

6

14 best_data_bits = in_bit + data_bits

15

16 return best_data_bits, best_metric

A.3 Viterbi

VITERBI_DECODE(code_bits, generators)

01 K = size(generators, 1);

02 // n is the number of code bits produced on each iteration, =1/r

03 n = size(generators, 2);

04 num_states = 2^(K-1);

05

06 // Pre-compute tables

07 // input_for_next_state[this_state][next_state] is the input bit that will

08 // make the transition from this to next. The value is -1 if that

09 // transition is not allowed

11 input_for_next_state = GET_INPUT_FOR_NEXT_STATE(K)

12 // outputs[this_state][input_bit] is the bits that are output when that

13 // transition is made

14 outputs = GET_OUTPUTS(generators)

15

16 path_metrics is an array of length num_states, element 0 is 0 others are infinity

17 next_path_metrics is an array of length num_states, filled with 0s

18

19 num_iterations = length(input_bits)/n;

21 branch_winners = 2D array of length num_states by num_iterations;

22 for j = 0 to num_iterations - 1

23 code_bits = code_bits(j*n:j);

24

25 for next_state = 0 to num_states - 1

26 min_path = -1;

27 min_path_dist = inf;

28 for state = 1:num_states

29 data_bit = input_for_next_state[this_state][next_state);

31 if data_bit == -1

32 continue;

33

34 output_bits = outputs[this_state][input_bit]

35 path_dist = HAMMING_DISTANCE(code_bits(j*n-1), output_bits) + path_metrics(this_state);

36 if path_dist < min_path_dist

37 min_path = this_state;

38 min_path_dist = path_dist;

39 branch_winners(next_state, j) = min_path;

41 next_path_metrics(next_state) = min_path_dist;

42 path_metrics = next_path_metrics;

7

43

44 // Do the traceback

45 PERFORM_TRACEBACK(branch_winners, path_metrics);

8

